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Abstract
Speech rate is a basic characteristic of language production, which affects the speaker’s intelligibility and communication 
efficiency. Various speech disorders, including persistent developmental stuttering, present altered speech rate. Specifically, 
adults who stutter (AWS) typically exhibit a slower speech rate compared to fluent speakers. Evidence from imaging studies 
suggests that the cerebellum contributes to the paced production of speech. People who stutter show structural and functional 
abnormalities in the cerebellum. However, the involvement of the cerebellar pathways in controlling speech rate remains 
unexplored. Here, we assess the association of the cerebellar peduncles with speech rate in AWS and control speakers. Dif-
fusion MRI and speech-rate data were collected in 42 participants (23 AWS, 19 controls). We used deterministic tractogra-
phy with Automatic Fiber segmentation and Quantification (AFQ) to identify the superior, middle, and inferior cerebellar 
peduncles (SCP, MCP, ICP) bilaterally, and quantified fractional anisotropy (FA) and mean diffusivity (MD) along each tract. 
No significant differences were observed between AWS and controls in the diffusivity values of the cerebellar peduncles. 
However, AWS demonstrated a significant negative association between speech rate and FA within the left ICP, a major 
cerebellar pathway that transmits sensory feedback signals from the olivary nucleus into the cerebellum. The involvement of 
the ICP in controlling speech production in AWS is compatible with the view that stuttering stems from hyperactive speech 
monitoring, where even minor deviations from the speech plan are considered as errors. In conclusion, our findings suggest 
a plausible neural mechanism for speech rate reduction observed in AWS.
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Introduction

The production of speech is a multifaceted process that 
requires the integration of diverse sources of information, 
including efficient lexical search and access, motor and artic-
ulatory programming, somatosensory feedback and respira-
tory coordination (Guenther 2006). A basic characteristic of 
speech production is speech rate, affecting speakers’ intel-
ligibility, fluency, and communication efficiency. Beyond its 
role in everyday communication, speech rate is also a key 
factor in the clinical assessment of various speech disor-
ders, such as apraxia of speech (Kent and Rosenbek 1983), 
dysarthria (Kent et al. 1987), and persistent developmental 
stuttering. In adults who stutter (AWS), speech rate is usu-
ally slower compared to fluent speakers, and correlated with 
stuttering severity, even when speech rate is assessed solely 
based on fluent utterances (de Andrade et al. 2003; Ingham 
et al. 2012; Kell et al. 2009). Here, we investigate the neural 
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pathways that are associated with speech rate in both AWS 
and fluent speakers.

To enable the complex task of speech production, speak-
ers utilize a large network of cortical and subcortical brain 
regions (Bohland and Guenther 2006; Hickok 2012; Tour-
ville and Guenther 2013; Tremblay et al. 2016). Broadly, 
motor control of speech production relies on a distributed 
neural system of distant brain regions which are wired 
through several cortico-striatal-thalamic and cortico-cere-
bellar-thalamic loops (Bohland and Guenther 2006; Trem-
blay et al. 2016). Within this network, the cerebellum seems 
to play a cardinal role in mediating speech rate. Indeed, 
fMRI studies of syllable repetition at different rates (2–6 Hz) 
found that the hemodynamic response in the cerebellum dis-
plays a stepwise increase of activation between 3 and 4 Hz 
(Riecker et al. 2005, 2006). This suggests that cerebellar 
control may be engaged in speech rates higher than 3 Hz. In 
line with this view, patients with cerebellar ataxia have been 
repeatedly shown to have reduced speech rate, approach-
ing 3 Hz, compared to healthy subjects whose speech rate 
varies around 4.95 Hz, as measured during syllable repeti-
tion (Ackermann and Brendel 2016; Schalling and Hartelius 
2013). Despite the extensive work on cerebellar contribution 
to speech rate, little is known about the unique contribution 
of the cerebellar white matter pathways to this component.

The fibers that carry the cerebellar input and output infor-
mation converge into three major white matter pathways: the 
superior cerebellar peduncle (SCP), the middle cerebellar 
peduncle (MCP), and the inferior cerebellar peduncle (ICP) 
(Perrini et al. 2013). The SCP is mainly composed of effer-
ent fibers that carry signals from the deep cerebellar nuclei 
to the contralateral cortex via the thalamus. The MCP is 
mainly composed of afferent fibers carrying signals from the 
cerebral cortex to the contralateral cerebellar cortex. Finally, 
the ICP is mainly composed of afferent fibers feeding signals 
from the spine and the olivary nucleus into the ipsilateral 
cerebellar cortex (Perrini et al. 2013). Functioning as exclu-
sive bridges between the cerebellum and extra-cerebellar 
regions, the structural properties and organization of the 
cerebellar peduncles (CPs) are important for understanding 
the neural basis of speech rate.

Speech rate is implicated in various speech disorders, 
including developmental stuttering. It has been proposed 
that aberrant speech rate is associated with the onset, devel-
opment, and maintenance of stuttering. The pre-onset speak-
ing rate of children who stutter is faster compared to their 
fluent peers (Kloth et al. 1995), while children who recov-
ered from stuttering exhibit slower speech rate compared to 
those whose stuttering persisted (Hall et al. 1999). In adults 
who stutter, slower speech rate is commonly observed com-
pared to fluent speakers (de Andrade et al. 2003; Kell et al. 
2009). Furthermore, speech rate modification approaches 
have been shown to facilitate fluency in AWS (Adams et al. 

1973). Although the reduced speech rate among people who 
stutter can be partly explained by the time spent on disfluent 
utterances, experimental data show that AWS exhibit slower 
speech even during fluent epochs1 (Ingham et al. 2012; Zim-
mermann 1980b).

Many view stuttering as a pathology of the motor control 
system (Alm 2004; Civier et al. 2010; Dietz et al. 1994; 
Max et al. 2004; Watkins et al. 2015, 2007; Zimmermann 
1980a, b, c). Models of speech motor control propose that 
the ability to produce rapid, fluent speech is dependent on 
an internal representation of the predicted auditory conse-
quence following a specific articulatory motor plan (Guen-
ther 2006; Hickok 2012). In line with that perspective, it has 
been proposed that an impairment in this “internal model” 
might cause speech deficits that resemble stuttering, includ-
ing slowed speech rate (Civier et al. 2010; Max et al. 2004). 
Accumulative data attribute the computation of internal 
models to the cerebellum (Wolpert et al. 1998). Neverthe-
less, the direct link between stuttering, speech rate, and the 
cerebellum was not investigated to date.

Neuroimaging studies suggest altered connectivity in 
AWS across widely distributed locations within their speech 
production network (Cai et al. 2014; Chang et al. 2011; 
Cieslak et al. 2015; Connally et al. 2014; Kronfeld-Duenias 
et al. 2016a, 2016b; Lu et al. 2012; Neef et al. 2018; Sitek 
et al. 2016; Xuan et al. 2012; Yang et al. 2016). Diffusion 
MRI (dMRI) studies detected stuttering-related microstruc-
tural differences in several of the white matter pathways that 
are presumably involved in motor aspects of speech produc-
tion. For example, recent studies by our group and others 
identified group differences between AWS and controls in 
the frontal aslant tract (FAT), connecting the inferior frontal 
gyrus with the supplementary motor area (Kronfeld-Duenias 
et al. 2016a; Neef et al. 2018). The critical role of the FAT 
in stuttering is further supported by results showing that 
direct axonal stimulation of this tract evokes stuttering-like 
dysfluencies (Kemerdere et al. 2016). Microstructural group 
differences between people who stutter and fluent speakers 
were further detected in the corticospinal tract (CST), con-
necting the primary motor cortex and the spinal cord (Cai 
et al. 2014; Chang et al. 2008). While other pathways have 
also been implicated in developmental stuttering, this gen-
eral pattern of findings suggests that motor control pathways 
may provide an important key for understanding speech con-
trol in stuttering.

Along these lines, cerebellar differences were detected 
in several studies comparing people who stutter and fluent 

1 Speech rate during fluent epochs is typically defined as ‘articulation 
rate’. While this is the more precise technical term for the measure we 
calculated, the term speech rate is maintained throughout the paper 
for the sake of simplicity.
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speakers using functional and structural imaging methods. 
For example, functional studies report elevated cerebellar 
activity in AWS (De Nil et al. 2003), an abnormal integra-
tion of information across the cerebellum-premotor circuit 
of AWS (Lu et al. 2009), and a positive correlation between 
speech rate and cerebellar activity among AWS (Fox et al. 
2000). With respect to the cerebellar white matter structure, 
decreased fractional anisotropy values were found in both 
children who stutter (Chang et al. 2015) and AWS (Connally 
et al. 2014). Specifically, using an ROI-based approach, 
Connally et al. (2014) showed that AWS have reduced FA 
in all CPs compared to fluent controls. The structural dif-
ferences in the CPs, together with the involvement of the 
cerebellum in controlling speech rate, suggest an indirect 
relation between speech rate and the microstructural prop-
erties of the CPs among AWS. However, to the best of our 
knowledge, this is the first study that directly examines the 
associations between speech rate and structural properties 
of the CPs in AWS.

In the current study, we evaluated the association between 
individual speakers’ speech rate and diffusivity estimates 
extracted from their CPs, in both AWS and fluent speakers. 
Our aims were twofold: (1) To assess previously reported 
group differences between AWS and controls in the micro-
structural properties of their CPs, and (2) To evaluate and 
compare the pattern of association between speech rate and 
CP-diffusivities in AWS vs. controls. Participants underwent 
a behavioral assessment to evaluate their stuttering severity 
and speech rate, and a dMRI scan to allow the structural 
analysis of their CPs. We identified, in each participant, the 
SCP, MCP and ICP, bilaterally, and extracted their micro-
structural properties. We tested for group differences in dif-
fusivity and assessed the association between diffusivity and 
speech rate, in both AWS and controls. Based on Connally 
et al. (2014), we expected to find structural group differences 
in the CPs. Moreover, we hypothesized significant group-
differences between AWS and controls in the association 
patterns observed between speech rate and CP-diffusivity. 
Specifically, based on fMRI evidence (De Nil et al. 2003), 
we hypothesized stronger reliance on the cerebellum in con-
trolling speech rate in AWS, and hence a tighter coupling 
between CP properties and speech rate measures in the 
experimental group, compared to controls.

Methods

Participants

A total of 44 participants were recruited as part of a larger 
study (Kronfeld-Duenias et al. 2018). The participants 
were all Hebrew speakers, physically healthy, with no 
history of neurological disease or psychiatric disorders. 

This study was approved by the Helsinki committee of the 
Tel-Aviv Sourasky Medical Center and by the ethics com-
mittee of the Faculty of Humanities at Bar-Ilan University.

Participants were assigned to the AWS group based on 
three criteria: (1) Self-reported history of stuttering since 
childhood, (2) displayed more than three stuttered-like dis-
fluencies (SLD, see “Speech measurements”; Ambrose and 
Yairi 1999) per 100 syllables during an unstructured inter-
view, and (3) Scored at least 10 on the Stuttering Severity 
Instrument (SSI-3, see “Stuttering severity evaluation”) 
(Riley 1994). The assignment of participants to the control 
group was based on their self-report of having no history 
of stuttering. Group assignment was verified by two speech 
pathologists based on audio and video recordings of an 
unstructured interview (see “Speaking tasks”). Following 
the above criteria, 25 participants were assigned to the 
AWS group (6 females), and 19 participants were assigned 
to the control group (3 females).

Speaking tasks

Speech evaluation was based on two speaking tests: an 
unstructured interview and a reading test (Riley 1994). 
Each session took place in a quiet room. Sessions were 
recorded simultaneously with a digital video camera (Sony 
DCR-DVD 106E, Sony Corporation of America, New 
York, NY, USA) and with a noise-canceling microphone 
(Sennheiser PC21, Sennheiser Electronic Corporation, 
Berlin, Germany). Audio signals from the microphone 
were digitally recorded using audio processing software 
(Goldwave, Inc., St. John’s, Canada) on a mono channel, 
with a sampling rate of 48 kHz (16 bit).

Unstructured interview

The unstructured interview was used to assess the spon-
taneous speech rate. Each participant was asked to talk 
for 10  min about a neutral topic (e.g., a recent travel 
experience, a movie, a book). The experimenter (V.K.-
D.) refrained from interrupting, and only asked questions 
when the participant was having difficulty to find a topic 
to talk about.

Reading task

Each participant was asked to read aloud one of three para-
graphs from the standardized and phonemically balanced 
Thousand Islands reading passage (Amir and Levine-Yundof 
2013). The paragraphs were of similar length (~ 200 sylla-
bles) and were randomly assigned to the participants.



804 Brain Structure and Function (2021) 226:801–816

1 3

Written semantic fluency task

Participants were requested to write down as many exem-
plars as they can, within 1 min, for a given semantic cat-
egory. The task was repeated 3 times, with different semantic 
categories: animals, fruits and vegetables, and vehicles. A 
spoken variant of this task was validated and standardized 
in Hebrew speaking adults (Kavé 2005). Written responses 
were elicited in our study to avoid the direct effects of dis-
fluencies on individuals’ performance. This task served to 
assess ease of lexical access separately from speech fluency.

MRI data acquisition

MRI scans were performed on a 3 T General Electric MRI 
scanner at the Tel-Aviv Sourasky Medical Center. The MRI 
protocol included standard anatomical and diffusion imaging 
sequences, as detailed below. Functional MRI scans were 
also included in the scan protocol but are not reported here 
(see Halag-Milo et al. 2016 for fMRI results in this sample).

T1 image acquisition

High-resolution T1 anatomical images were acquired using 
a 3D fast spoiled gradient-echo (FSPGR) sequence, with a 
spatial resolution of 1 × 1 × 1 mm voxel size. We collected 
about 150 ± 12 axial slices per subject, covering the entire 
cerebrum and cerebellum.

Diffusion weighted image acquisition

A standard dMRI protocol was applied by means of a sin-
gle-shot spin-echo diffusion-weighted echo-planar imaging 
(DW-EPI) sequence (~ 68 axial slices, 2 mm thick, with no 
gap; matrix size = 128 × 128, with a voxel size of 2 × 2 × 2 
cubic mm). dMRI data were acquired along 19 non-collinear 
gradient directions (b = 1000 s/mm2) and one reference vol-
ume (b = 0 s/mm2). This protocol was repeated twice for an 
improved signal-to-noise ratio.

Data analysis

Behavioral data analysis

Speech measurements

Two speech measures were used in the current study: (1) 
Speech rate, and (2) Stuttered-like disfluencies (SLD). The 
measures were calculated manually based on the audio 
recordings of the unstructured interview. As a first step, the 
interviews were transcribed, and disfluent utterances (such 
as hesitations, prolongations, repetitions, and pauses longer 

than 250 ms) were annotated. This was done by two trained 
research assistants and re-evaluated by an expert speech 
pathologist (O.A.). To reduce potential bias, both research 
assistants and the speech pathologist were blind to the par-
ticipants’ group assignment (AWS or control). At the end of 
this process, a minimum of 600 syllables for each participant 
was obtained.

Speech rate was calculated as the ratio between the total 
number of analyzed syllables and the time it took the partici-
pants to produce them (i.e., syllables/sec). For the purpose of 
this study, we calculated speech rate only during fluent utter-
ances, after excluding disfluent speech segments (Ambrose 
and Yairi 1999; Amir 2016; Amir and Grinfeld 2011; Roch-
man and Amir 2013). This analysis was performed follow-
ing the detailed description in Amir and Grinfeld (2011). In 
short, an utterance was defined based on three criteria: (1) 
communicated an idea, (2) had a well-defined intonation 
contour, and (3) was grammatically complete. Utterances 
that included disfluencies, hesitations, or pauses greater than 
250 ms, were manually identified. In such cases, the entire 
sentence was excluded, to avoid potential effects of the stut-
tered utterances on neighboring utterances. This measure is 
typically labeled ‘articulation rate’. Here we chose to refer 
to the more commonly used term ‘speech rate’, instead of 
‘articulation rate’, for simplicity.

Stuttered-like disfluency (SLD) was defined as the per-
centage of part-word repetitions, monosyllabic-word rep-
etitions and dysrhythmic phonations (including prolonga-
tions, blocks and broken words), out of the total number of 
syllables analyzed. Other disfluencies that are commonly 
found in fluent speakers (including interjections, revisions 
and multisyllabic/phrase repetitions) were not analyzed in 
the current study (Ambrose and Yairi 1999).

Stuttering severity evaluation

Stuttering severity was evaluated using the stuttering sever-
ity evaluation instrument (SSI-3) (Riley 1994). Following 
this protocol, we evaluated the percent of stuttered syllables, 
stuttering duration, and physical concomitants. The evalua-
tion was obtained by two expert speech pathologists and was 
based on the audio and video recordings of the participants.

Statistical analysis

Due to the relatively small sample size, we could not rely 
on the assumption that the data is drawn from a specific 
probability distribution. Therefore, we used non-paramet-
ric statistics to analyze the data. To estimate group differ-
ences by means of age, gender, handedness, and educa-
tion levels, the non-parametric Wilcoxon signed-rank test 
was used. Wilcoxon signed-rank test was further used to 
estimate group differences in speech rate. To evaluate the 
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association between speech rate and SLD we used Spear-
man’s correlation.

Imaging data analysis

Software

Data analysis was conducted using Matlab 2012b (The 
Mathworks, Natick, MA). For data preprocessing, the open 
source ‘mrDiffusion’ package was used (https ://githu b.com/
vista lab/vista soft/tree/maste r/mrDiff usio n). Tract identifica-
tion and quantification were implemented with the automatic 
fiber segmentation and quantification (AFQ) toolkit (Yeat-
man et al. 2012).

Data preprocessing

Diffusion MRI data were preprocessed in native space for 
each individual separately, following a published pipeline 
(Blecher et al. 2016; Kronfeld-Duenias et al. 2016a; Yablon-
ski et al. 2018). This pipeline included a rigid transformation 
of the volume anatomy to the anterior commissure-posterior 
commissure (AC-PC) plane, motion- and eddy-current cor-
rection of DW-EPI data, alignment of DW-EPI data to the 
volume anatomy with the corresponding recalculation of the 
diffusion directions, resampling and tensor fitting. Specifi-
cally, T1 images were rotated to the AC-PC plane following 
manual identification of the anterior and posterior commis-
sures. Diffusion weighted images were corrected for eddy-
current and head motion distortions using a 14-parameter 
constrained non-linear co-registration algorithm based on 
the expected pattern of eddy-current distortions (Rohde et al. 
2004). Additionally, each diffusion weighted image was reg-
istered to the mean of the two non-diffusion weighted (b0) 
images and the mean b0 image was registered automatically 
to the T1 image using a rigid body mutual information maxi-
mization algorithm (as implemented in SPM5; Friston and 
Ashburner 2004). The combined transform, incorporating 
both eddy-current correction and anatomical alignment, was 
applied to the raw diffusion data, and the diffusion data were 
resampled at 2 × 2 × 2 cubic mm isotropic voxels. Gradient 
directions were adjusted according to the same transforma-
tion (Leemans and Jones 2009).

Diffusion tensors were fit to the registered diffusion data 
using a least-squares algorithm. Then, using tensor decom-
position, we extracted the three eigenvectors and eigenval-
ues of the tensor, and calculated, for each voxel, fractional 
anisotropy (FA), mean diffusivity (MD), axial diffusivity 
(AD), and radial diffusivity (RD). FA was calculated as the 
normalized standard deviation of the eigenvalues. MD was 
calculated as the average of the three eigenvalues. AD was 

defined as the eigenvalue of the first eigenvector (diffusivity 
along the principal eigenvector). RD was defined as the aver-
age diffusivity of the second and third eigenvalues.

Tract identification and segmentation

We identified the three CPs bilaterally in each individual’s 
native-space, resulting in six pathways for each participant: 
the left and right SCP, connecting the cerebellar nuclei with 
the contralateral thalamus; the left and right MCP, connect-
ing the cerebrum with the contralateral cerebellar cortex via 
the pontine nuclei; and the left and right ICP, connecting the 
spine and the olivary nucleus with the ipsilateral cerebellar 
cortex (Fig. S1). To identify these tracts and quantify their 
diffusion parameters we used the AFQ package (Yeatman 
et al. 2012), which consists of the following steps: (1) whole-
brain fiber tractography, (2) region-of-interest (ROI)-based 
tract segmentation and cleaning, and (3) quantification of 
diffusion parameters along the tract.

A whole-brain fiber group was tracked using a determinis-
tic Streamlines Tractography (STT) algorithm (Basser et al. 
2000; Mori et al. 1999) with a fourth-order Runge–Kutta 
path integration method and 1 mm fixed step size. To seg-
ment the tracts, we used a multiple waypoint-ROI approach 
in which the whole-brain fiber group was intersected with 
predefined waypoint-ROIs using logical operations. The 
waypoint-ROI was first defined on the JHU MNI T1 template 
and then back-transformed to each participant’s native space 
(the specific location of the waypoint-ROIs can be found in 
Fig. S1). After tract segmentation, an automated cleaning 
procedure was applied to remove outlier streamlines from 
each individual’s tract. Fibers were removed if they were 
longer than 1 standard deviation from the mean fiber length 
and spatially deviated more than 4 standard deviations from 
the core of the tract (Bruckert et al. 2019). Finally, diffusion 
properties were calculated at 30 equidistant nodes along the 
tract (Bruckert et al. 2019; Yeatman et al. 2012).

Manual ROI‑definition of the CPs

To assess group differences reported in Connally et al. 
(2014), the CPs were defined once again as ROIs, without 
using tractography. This method was previously described 
in detail by Klein et al. (2011) and followed closely in 
Connally et al. (2014). In short, each tract was manually 
defined as a single ROI, placed in a pre-specified location 
on each peduncle, for a total of six ROIs per participant. 
For each ROI in each participant, diffusivity values (FA 
and MD) were averaged across all the voxels occupied by 
the ROI. Group comparisons were applied to these values 
as explained below.

https://github.com/vistalab/vistasoft/tree/master/mrDiffusion
https://github.com/vistalab/vistasoft/tree/master/mrDiffusion
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Statistical analysis

Analyses were restricted to the core of the tracts, enclosed 
between the two waypoint-ROIs used for tractography. This 
approach eliminates the extreme segments of the tracts 
which are highly variable across participants.

Motion analysis We carried out head-motion analysis along 
the same protocol reported in Yendiki et al. (2014). In short, 
we computed three parameters for head motion (in voxels) 
and three parameters for rotation (in degrees) by register-
ing each volume to the first volume. Then, we averaged the 
absolute values of each component over all the volumes for 
a given participant. A single translation component and a 
single rotation component were calculated for each partici-
pant, by averaging over the three parameters for each com-
ponent. Finally, we compared each component (translation, 
rotation) between the groups using a t-test.

Group differences For each participant and each pedun-
cle, we calculated the average FA and average MD value 
across the core of the tract (these values are termed tract-FA 
and tract-MD, respectively). These values were compared 
between the groups using the non-parametric Wilcoxon 
signed-rank test. Additionally, we evaluated local group-dif-
ferences by comparing the local diffusivity measures in 30 
nodes along each CP. This along-tract comparison typically 
provides better sensitivity compared to tract-FA and tract-
MD comparisons, because the latter may mask group differ-
ences within systematic variability in diffusivity measures 
along the extent of the tract. To account for multiple com-
parisons, along-tract statistics were corrected using a non-
parametric permutation test, controlling the family-wise 
error (FWE) corrected alpha at 0.05 (Nichols and Holmes 
2002). To assess group differences within the ROI-defined 
CPs, we used a series of 6 Wilcoxon signed-rank tests (one 
per CP), FDR corrected at p < 0.05. This non-parametric 
statistic was used to refrain from the assumption that the 
data is drawn from a predefined probability distribution. 
Power analysis revealed that a sample size of 19 participants 
in each group and significance of α = 0.05, is sufficient to 
obtain power of at least 0.83 for group differences in the 
SCP and ICP, and power of at least 0.64 in the MCP (based 
on the effect size reported in Connally et al. 2014).

Brain‑behavior correlations Associations between the CPs 
and speech rate were assessed by calculating Spearman’s 
rank-order correlations. First, we assessed the simple corre-
lations between tract-FA and speech rate and between tract-
MD and speech rate, for each CP. Second, to gain further 
sensitivity, we assessed the correlation of each peduncle 
with speech rate at 30 equidistant locations along the core of 
the tract (Yeatman et al. 2012). To account for multiple com-

parisons, significance was corrected using a non-parametric 
permutation test, controlling the family-wise error (FWE) 
corrected alpha at 0.05 (Nichols and Holmes 2002). To be 
considered a significant cluster of nodes, the cluster should 
have satisfied two criteria: (1) each node within the cluster 
was significantly correlated with speech rate at a level of 
alpha = 0.05 (uncorrected), and (2) the number of adjacent 
nodes composing the cluster should have been larger than 
a critical size, determined by the permutation algorithm 
(Nichols and Holmes 2002; Yeatman et  al. 2012). Lastly, 
significant clusters were further examined by calculating the 
correlation between speech rate and the mean cluster AD or 
mean cluster RD.

Bayes factor analysis We measured the strength of evidence 
for group differences in white matter tracts by performing 
a Bayesian analysis. The analysis was carried out using the 
ttestBF function in the BayesFactor R package (Morey and 
Rouder 2018; R Core Team 2013). We restricted the Bayes-
ian analysis to the mean-tract and ROI measurements to 
refrain from multiple comparisons along the tract.

Multiple linear regression To account for additional fac-
tors that could contribute to the results, we ran a multiple 
linear regression model. Specifically, we built a multiple 
linear regression model to predict speech rate by five differ-
ent factors: (1) mean FA in the significant cluster of nodes; 
(2) SLD score; (3) age; (4) education; (5) written semantic 
fluency. To assess whether the effect of FA on speech rate 
is modified by SLD, we integrated into our model the inter-
action between FA and SLD. The analysis was carried out 
using the open-source R environment for statistical comput-
ing (R Core Team 2013).

Results

Two AWS participants were excluded from analysis, because 
they demonstrated extremely high SLDs (more than 4 SDs 
above the mean SLD of the AWS group). The demographic 
characteristics of the final analyzed sample (N = 42) can be 
found in Table 1.

Behavioral results

The samples of AWS and controls were well matched in 
terms of age, gender, handedness, and education levels 
(p > 0.3) (Table 1). As expected, the groups differed sig-
nificantly in their stuttering severity scores, percent of 
stuttered-like syllables and speech rates, as indicated by a 
series of Wilcoxon signed-rank tests (p < 0.05, see Table 1 
and Fig. 1a). Spearman’s correlation showed a significant 
negative correlation between speech rate and SLD in AWS, 
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such that more frequent stuttering events were associated 
with slower speech (r = − 0.7213, p < 0.0001, Fig. 1b). The 
same analysis in the control group yielded a non-significant 
correlation (r = − 0.3053, p = 0.2033, Fig. 1b). Furthermore, 
Fisher’s Z test confirmed that the correlation between speech 
rate and SLD observed in AWS was significantly different 
than the one observed in controls (Z = − 1.9530, p < 0.05).

Data quality control

The following steps were carried out as data quality control: 
First, we compared the head-motion parameters, between 
the groups (translation and rotation; see “Methods”), and 
found no significant group differences in these two param-
eters (p > 0.1) (Fig. S2). Next, the 3D representation of the 

identified tracts were carefully examined by the first and last 
author (S.J & M.B-S) in every individual. Finally, we made 
sure that the automatic cleaning procedure (implemented in 
the AFQ package) removed a similar number of streamlines 
in both groups, AWS and controls (Fig. S3).

Identification of the cerebellar peduncles 
in individual participants

The bilateral SCP and MCP, and the left ICP were success-
fully identified in all participants (N = 42). The right ICP 
was identified in 41 out of 42 participants but could not 
be identified in one control participant. Figure 2 shows the 
tracts of interest identified in six representative participants 
(three of each group).

No evidence for group differences 
in the microstructural properties of the CPs

FA and MD values were extracted from individual recon-
structions of the CPs and compared between AWS and 
controls. First, we evaluated group differences in the mean 
tract-FA and tract-MD values of each tract. This analysis 
did not yield any significant group-differences in diffusivity 
values (p > 0.1, FDR corrected for 6 comparisons for each 
dependent measure separately) (Tables S1 and S2). Recog-
nizing that group-differences in FA and MD may be masked 
by averaging the diffusivity parameters along the trajectory 
of the pathway (Travis et. al. 2015), we further compared, 
node-by-node, the profiles of the diffusivity parameters 
along 30 equidistant nodes, in AWS vs. controls. This anal-
ysis, too, failed to detect any significant group-differences 
in the CPs (p > 0.1, FDR corrected for 6 comparisons; See 
Fig. 3 for a visualization of FA profiles in each group and 
each CP, and Fig. S4 for a similar comparison of MD pro-
files). In fact, the profiles were so consistent between the 

Table 1  Sample characteristics and fluency  measuresa

AWS Adults who stutter, SLD stuttered-like-disfluencies per 100 syllables, n.s. not significant, M male, F female
*p < 0.05
a The table depicts Mean [Range] values for each parameter, except Gender
b Education data are missing in two AWS, N = 21

AWS Controls p
(N = 23) (N = 19)

Age 31.17 [19–52] 33.26 [19–53] n.s
Gender 6F/17 M 3F/16 M n.s
Education 14.667 [12–21]b 15.316 [12–21] n.s
SSI-3 23 [10–41.5] 4.579 [2–10] *p = 3.93 × 10−8

SLD (%) 9.507 [3.09–23.82] 2.1794 [0.84–4.65] *p = 1.47 × 10−7

Speech rate (syllables/sec) 4.41 [2.06–6.61] 5.96 [4.56–7.02] *p = 2.74 × 10−4

Fig. 1  Individual speech rates in AWS and controls. a Speech rate (in 
syllables per second) is presented for individuals in the AWS (orange) 
and control (cyan) groups. The median of each group is marked with 
a colored horizontal line. At the group level, speech rate in AWS 
is significantly smaller compared to controls (p < 0.001). b In the 
AWS group (orange), a significant negative Spearman’s correlation 
(p < 0.001) is found between speech rate and SLD, indicating that 
more severe stuttering is associated with slower speech (recall that 
speech rate is assessed over fluent epochs only, so these measures are 
derived independently from the speech samples)
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groups, that they may be considered estimates of test–retest 
reliability of the measurements.

These results contradict findings from a previous study 
(Connally et al. 2014) that reported a significant FA reduc-
tion in the CPs of AWS compared to fluent speakers. A pos-
sible explanation for this discrepancy lies within the dif-
ferent methods used to define the CPs. In contrast to our 
tractography approach, Connally et al. (2014) used an ROI-
based definition of the tracts. To test this possibility, we 
repeated the structural comparison between the groups, this 
time implementing the same analysis described in Connally 
et al. (2014) (Fig. 4; see “Methods” for details). This analy-
sis, too, failed to detect any significant group differences in 
the CPs of AWS vs. controls (Fig. 5 and Fig. S5, and Tables 
S1 and S2). In summary, in the current sample, no signifi-
cant group differences were detected in the CPs of AWS and 
controls, neither using tractography nor using anatomically 
defined ROIs.

A Bayesian analysis was further conducted to quantify 
the strength of evidence for white matter group differ-
ences. All Bayes factors were smaller than 1, providing 
support for the null hypothesis over the alternative hypoth-
esis. A full description of the results is found in Tables 
S1 and S2.

Speech rate is associated with microstructural 
properties of the left ICP in AWS

To estimate the association between speech rate and the 
microstructural properties of the CPs, we first calculated 
Spearman’s correlations between speech rate and mean tract 
diffusivities (tract-FA and tract-MD). These correlations 
were calculated for each peduncle and in each group sepa-
rately (2 groups × 6 CPs × 2 diffusion parameters = 24 cor-
relations overall). However, no significant correlation was 
detected between speech rate and mean tract diffusivities in 
the CPs (p > 0.1, uncorrected). To gain enhanced sensitiv-
ity for detecting localized brain-behavior correlations, we 
examined the associations between speech rate and local 
diffusivity values, node by node, along the trajectory of each 
cerebellar peduncle (see “Methods”). Using this analysis, 
we found a significant correlation in AWS between speech 
rate and FA within the left ICP (r = − 0.6235, p < 0.01, FWE 
corrected across 30 nodes; see Fig. 6). Specifically, slower 
speech was associated with higher FA in a cluster of nodes 
within the left ICP (nodes 16–21). Moreover, the correla-
tion coefficient in AWS differed significantly from the one 
calculated in corresponding nodes of the left ICP in control 
participants (r = − 0.0703, Fisher’s Z = 1.763, p < 0.05).

Fig. 2  Cerebellar peduncles in AWS and controls. Cerebellar pedun-
cles of the left hemisphere are shown in six representative subjects. 
Tracts are overlaid on a midsagittal T1 image. (a–c) Three representa-
tive participants in the AWS group; (d–f) Three representative partic-

ipants in the control group. Superior cerebellar peduncle (SCP; blue); 
Middle cerebellar peduncle (MCP; red); Inferior cerebellar peduncle 
(ICP; yellow)
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A parallel analysis of MD tract-profiles in AWS did not 
detect any association with speech rate in any of the CPs. In 
controls, no significant correlations were found with speech 
rate in any of the CPs, considering both FA and MD as the 
dependent measure.

To further examine the microstructural factors underly-
ing the association between the left ICP and speech rate 

in AWS, we calculated the mean-AD and mean-RD values 
within the cluster of nodes that showed a significant correla-
tion with speech rate (nodes 16:21). A significant positive 
correlation was found between that cluster’s mean-RD and 
speech rate (r = 0.5148, p = 0.0119). The correlation between 
speech rate and the mean-AD in this cluster was non-sig-
nificant (r = − 0.3774, p = 0.0757) (Fig. S6). In summary, 

Fig. 3  Group comparison of FA profiles. The left SCP (a), MCP (d) 
and ICP (g) are visualized in a single control participant (male, 31), 
overlaid on a T1 image of the same participant. Dotted lines on the 
tractograms indicate the location of the waypoint-ROIs used for tract 
segmentation (see “Methods”). FA profiles are shown for the bilateral 
SCP (b–c), MCP (e–f) and ICP (h–i). The profiles are plotted along 

30 equidistant nodes between two waypoint-ROIs. The colored lines 
indicate the average profile of AWS (orange) and controls (cyan). 
Colored dotted lines indicate ± 1 standard deviation for each group. 
SCP-L left superior cerebellar peduncle, MCP-L left middle cerebel-
lar peduncle, ICP-L left inferior cerebellar peduncle, ROI- region of 
interest, P posterior, A anterior, L left, R right
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the association between FA and speech rate was primarily 
driven by RD in this cluster.

Finally, to account for additional factors that could con-
tribute to the association between speech rate and white mat-
ter microstructure, we calculated a multiple linear regression 
model, predicting speech rate in AWS based on five factors: 
(1) mean FA in the significant cluster of nodes within the 
left ICP; (2) SLD score; (3) age; (4) education; (5) written 
semantic fluency. To assess whether the predictive effect of 
FA is modified by SLD, we further included in this model 
the interaction between FA and SLD. The results indicated 
that both FA and SLD, but not their interaction, contribute 
significantly to the prediction of speech rate (see Table 2). 
Age, education, and written semantic fluency did not con-
tribute significantly to the model (p > 0.1).

Discussion

The current study aimed to assess microstructural differ-
ences in the cerebellar peduncles of AWS and controls, and 
to examine the potential associations between the CPs and 
speech rate in these two groups. Our data do not support 
previously reported group differences between AWS and 
fluent speakers in the microstructural properties of the CPs. 
However, we report differences between AWS and controls 
in the form of differential association patterns with speech 
rate within the left ICP. Specifically, we show that the micro-
structural properties of the left ICP, quantified with frac-
tional anisotropy, are significantly correlated with speech 
rate in AWS, but not in controls, and this group difference 

was significant as assessed by the Fisher’s Z test. Our results 
suggest that the left ICP is relevant for modulating speech 
rate in adults who have been stuttering for most of their 
lives. We discuss potential interpretations of these findings 
below.

No group differences in CP microstructure of AWS 
and controls

Contrary to previous findings by Connally et al. (2014), our 
data do not demonstrate group differences between AWS and 
fluent speakers in the microstructural properties of the CPs. 
We sought these differences in three different approaches, 
yet failed to find any significant group-difference, neither in 
a tractography-based definition of the CPs (comparing tract 
properties as tract-mean or along the tract), nor using an ROI 
definition of the CPs. The discrepancy between our results 
and previous findings could stem from several reasons, the 
most prominent ones relate to age and scan protocols, as we 
explain below.

Age: our sample spans an older group of participants 
compared to the previous sample (mean age: 31.2 years 
in our sample, compared to 22.6 years in Connally et al. 
2014). This is particularly relevant: as shown in Connally 
et al. (2014), group differences in FA of the inferior cerebel-
lar peduncle diminish dramatically with age (ibid., Fig. 5c). 
We, therefore, consider age the most likely reason for the 
differences observed in the pattern of results reported here 
compared to prior findings. A median split by age, how-
ever, failed to detect group differences even in our younger 
participants (Fig. S7). Still, a proper test of the age hypoth-
esis would require a large scale cross-sectional dMRI study 
recruiting a sample of well-matched AWS and controls 
across a wide range of ages.

Scan protocol: different scanning protocols applied in 
each study could have an impact on the results. Connally 
et al. (2014) acquired dMRI data at higher angular reso-
lution but relatively lower spatial resolution (60 gradient 
directions with a voxel size of 2.5 cubic mm). By compari-
son, our protocol combines lower angular resolution with 
a relatively higher spatial resolution (19 gradient direc-
tions scanned twice with a voxel size of 2 cubic mm). The 
trade-off between angular and spatial resolution may influ-
ence diffusion modeling at the voxel level (Schilling et al. 
2017), potentially leading to different sensitivity to group 
differences.

What is the role of the ICP in mediating speech rate 
among AWS?

The ICP is a major cerebellar pathway, feeding signals from 
the olivary nucleus into the cerebellum via the climbing 

Fig. 4  CPs defined as ROIs. Following Fig.  4 in Connally et  al. 
(2014), the 3 bilateral CPs were defined on participants’ color-coded 
map depicting the principal diffusion direction (PDD) in each voxel. 
Voxels included in each ROI are shown here for a single control par-
ticipant (male, 28). a The left SCP ROI is shown in light blue over-
laid on a sagittal PDD map. b The left ICP ROI is shown in yellow 
overlaid on a sagittal PDD map. c The bilateral SCP (light blue) and 
ICP (yellow) ROIs are overlaid on a coronal view. d The bilateral 
MCP (red) and ICP (yellow) ROIs overlaid on an axial view
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fibers. These signals, transmitted through the olivo-cere-
bellar fibers, are repeatedly implicated in detecting motor 
errors (for review see Shadmehr 2017). The “error hypoth-
esis” framework postulates that the inferior olive compares 
motor commands from the cerebrum with feedback from 
the periphery, thereby generating an error signal that is fed 
up to the cerebellum (Streng et al. 2018). This hypothesis 
has been supported in multiple motor behaviors, including 
locomotion (Andersson and Armstrong 1987; Jossinger et al. 

2020), hand-reaching movements (Hewitt et al. 2015) and 
saccadic movements (Herzfeld et al. 2018).

Alterations in error monitoring during speech production 
have been proposed as part of the core deficit in stuttering 
(Arnstein et al. 2011; Max et al. 2004; Postma and Kolk 
1993). One view of developmental stuttering suggests that 
AWS tend to over-rely on afferent feedback as a way to cope 
with an insufficient or unstable internal model of speech 
production (Max et al. 2004). Alternatively, other views 

Fig. 5  Group comparison of FA in region-of-interest analysis. Data 
is shown for the SCP (panels a–c), MCP (panels d–f) and ICP (pan-
els g–i). ROIs are visualized in a single control participant (male, 28) 
overlaid on the FA map (panels a, d, g). Mean FA extracted from the 

ROI of each participant is shown for the SCP (b–c), MCP (e–f) and 
ICP (h–i), bilaterally, for AWS (orange) and controls (cyan). SCP 
superior cerebellar peduncle, MCP middle cerebellar peduncle, ICP 
inferior cerebellar peduncle, P posterior, A anterior, L left, R right
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postulate that the disfluencies in stuttering are due to hyper-
active speech monitoring, where even minor deviations from 
the speech plan are considered as errors (Vasic and Wijnen 
2005). This last view was supported by electrophysiological 
studies (Arnstein et al. 2011) as well as by computational 
models of speech (Civier et al. 2010). The superfluous cor-
rection and the low threshold for error detection may halt the 
fluent production of speech and lead to a reduction in speech 
rate in people who stutter.

Cerebellar implications in stuttering beyond speech 
rate

It is wildly accepted that the cerebellum is capable of gen-
erating “internal models” of the body’s dynamics (Wolpert 
et al. 1998). According to the DIVA model (Guenther 2006), 
cerebellar internal models of speech production simulate the 

input–output relationships between the articulatory plan and 
its auditory consequence. If the actual auditory feedback 
does not fit the model’s prediction, the sensorimotor system 
generates a corrective articulatory response to compensate 
for the acoustic error. Accumulative evidence suggests that 
stuttering may result in deficits in auditory-motor feedback 
monitoring, as AWS were shown to produce smaller cor-
rective motor responses to compensate for auditory per-
turbations (Cai et al. 2012; Daliri et al. 2018). Recently, 
this deficit was also demonstrated in 3–9-year-old children 
who stutter, with a more prominent effect in the younger 
age group of 3–6 years (Kim et al. 2020). This suggests that 
impaired auditory-motor feedback monitoring during speech 
production may contribute to the onset of stuttering.

Theoretical models of stuttering suggest that the changes 
in speech rate, evident among people who stutter, are due to 
a disruption in a more general role of the cerebellum in time-
keeping (Howell 2004; Ivry 1997). This theory is supported 
by clinical findings, showing that patients with damage to the 
cerebellum have impairments in behaviors that depend on 
accurate timing, including conditional learning (Raymond 
et al. 1996), agonist–antagonist muscle activity (Hore and 
Flament 1986), and speech production (Ackermann 2008). 
It is hypothesized that the cerebellar timekeeper marks the 
rate of ongoing events to enable the coordination between 
those events within a task. When interrupted, for example 
by increased load, the activities regulated by the cerebellar 
timekeeper are slowed (Howell 2004). In line with this view, 
the reduction in speech rate in persistent developmental stut-
tering can be attributed to low capacity of the timekeeping 
mechanism, which is unable to cope with an increasing rate 
of inputs.

Fig. 6  Speech rate is correlated with white matter microstructure in 
the left ICP of adults who stutter, but not in controls. a The left ICP 
is shown in a single control participant (male, 31), overlaid on a mid-
sagittal T1 image of the same individual. Colored overlay represents 
Spearman’s r values between speech rate and FA in each node along 

the tract. The white arrow points to the significant cluster. b For each 
participant (AWS in orange, controls in cyan), the mean FA value of 
the significant cluster in panel a is plotted against the speech rate of 
the same individual

Table 2  Regression analysis for the prediction of speech rate (in 
AWS only, N = 23)

*p < 0.05
a Mean FA in the significant cluster of L-ICP nodes, see Fig.  6 and 
accompanying text

Factors β t value p

FAa − 23.97 − 2.59 0.022*
SLD (%) − 0.64 − 2.408 0.031*
Age − 0.03 − 0.839 0.416
Education 0.14 1.423 0.178
Semantic fluency 

(written)
0.02 0.425 0.677

FA × SLD (%) 1.00 1.890 0.08
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Apart from timekeeping, the cerebellum has also been 
implicated in sensorimotor integration (Molinari et  al. 
2007). In this context, emerging data suggest that the overt 
impairment in timing among people who stutter results 
from a deficit in sensorimotor integration (Harrington et al. 
2004; Iimura et al. 2019; Loucks and De Nil 2006). These 
views are supported by behavioral data showing that AWS 
demonstrate abnormal sensorimotor integration during jaw 
proprioception (Loucks and De Nil 2006), delayed auditory 
feedback task (Iimura et al. 2019), and even in a non-speech 
finger tapping task (Korzeczek et al. 2020; Loucks and De 
Nil 2006; Sares et al. 2019; Smits-Bandstra ans De Nil 
2007). It is yet to be seen whether the cerebellum is directly 
involved in sensorimotor integration among AWS.

Unpacking a negative correlation with FA in terms 
of tissue properties

Our data show a negative correlation between speech rate 
and FA values within the left ICP of AWS, accompanied 
by a positive correlation with RD. That is, AWS who speak 
slower, on average, have higher FA values and lower RD 
values in the left ICP. FA is known to be affected by vari-
ous biological factors including axonal diameter, axonal 
density, directional coherence, and myelin content (Assaf 
and Pasternak 2008; Beaulieu 2002; Jones et al. 2013). One 
potential explanation of our findings can be offered by focus-
ing on myelin. It has been shown, on independent grounds, 
that FA is positively correlated with myelin water fraction 
(MWF) in core white matter areas (De Santis et al. 2014; 
Mädler et al. 2008; Stikov et al. 2015; Travis et al. 2019; 
Uddin et al. 2019). Since higher myelin content is related to 
faster conduction of information between neurons (Hartline 
and Colman 2007), we may carefully infer that higher FA 
may also be related to faster transfer of information. Along 
these lines, the negative correlation between FA and speech 
rate supports the hyperactive speech-monitoring hypothesis 
regarding AWS, suggesting that slower speech production in 
AWS is related to faster conduction of error signals through 
the ICP, which in turn reduces the fluent production of 
speech. This potential explanation, while speculative at this 
point, may be tested more directly in future measurements 
of myelin water fraction in the cerebellar pathways of AWS 
and fluent speakers.

Limitations

This study has several limitations. First, the relatively mod-
est sample size (N = 23 for AWS and N = 19 for controls) 
limits the statistical power of our analysis. It is possible that 
larger samples would demonstrate significant group differ-
ences in the microstructural properties of the CPs. Second, 
our scan protocol was limited to a single shell measurement 

along 19 diffusion directions. This protocol enabled us to 
greatly reduce the scan duration, hence minimizing the 
within-scan head motion. To obtain an improved signal-to-
noise ratio, we repeated the acquisition twice. While these 
scanning parameters are insufficient for fitting complex 
shapes such as constrained-spherical-convolution (CSD) 
(Tournier et al. 2008), they provide sufficient power for ten-
sor fitting. In fact, it has been shown that using repeated 
scans (as used here) with six diffusion directions provides 
similar results as using a single scan of 30 directions (Lebel 
et al. 2012). This study still awaits replication with a more 
updated scanning protocol and analysis methods.

Finally, in a sample of adult participants, we cannot be 
conclusive about the direction of causality that underlies the 
correlation we detected in AWS. The observed correlation 
with speech rate in the left ICP may well reflect a compen-
sation mechanism after years of rate-modification training, 
rather than the cause for slower speech in AWS. Studies in 
children who stutter are better suited to address the ques-
tion of causality. Importantly, young children who stutter 
(aged 3–10 years) show modified functional and structural 
connectivity of the cerebellum compared with age-matched 
peers, suggesting an inherent deficit in cerebellar connectiv-
ity patterns in this population (Chang and Zhu 2013; Chang 
et al. 2015). Future intervention studies assessing the effect 
of speech rate modification on the CPs will provide the nec-
essary evidence to address the question of causality.

Conclusions

In conclusion, the current study identifies, for the first time, 
an association between speech rate and the microstructural 
properties of the ICP in AWS. Furthermore, AWS and fluent 
speakers differ significantly in this correlation pattern. Thus, 
our findings support a role for the left ICP in modulating 
speech rate among AWS, but not in controls. By demonstrat-
ing the involvement of the ICP in developmental stuttering, 
our findings fit well within the view that stuttering stems 
from hyperactive speech monitoring, where even minor 
deviations from the speech plan are considered as errors 
(Vasic and Wijnen 2005). It remains to be seen whether the 
variability of the ICP among AWS reflects a compensatory 
mechanism, or rather a causal deficit that leads to a reduction 
in speech rate in this population.
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